Uranyl-Fluoride (²³³U) Solutions in Spherical Stainless Steel Vessels with Reflectors of Be, CH₂ and Be-CH₂ Composites Part II D. P. Heinrichs This article was submitted to the International Criticality Safety Benchmark Evaluation Project Working Group Meeting London, England, June 17–21, 2002 ## U.S. Department of Energy **April 8, 2002** Approved for public release; further dissemination unlimited #### **DISCLAIMER** This document was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor the University of California nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or the University of California, and shall not be used for advertising or product endorsement purposes. This is a preprint of a paper intended for publication in a journal or proceedings. Since changes may be made before publication, this preprint is made available with the understanding that it will not be cited or reproduced without the permission of the author. This report has been reproduced directly from the best available copy. Available to DOE and DOE contractors from the Office of Scientific and Technical Information P.O. Box 62, Oak Ridge, TN 37831 Prices available from (423) 576-8401 http://apollo.osti.gov/bridge/ Available to the public from the National Technical Information Service U.S. Department of Commerce 5285 Port Royal Rd., Springfield, VA 22161 http://www.ntis.gov/ OR Lawrence Livermore National Laboratory Technical Information Department's Digital Library http://www.llnl.gov/tid/Library.html U233-SOL-THERM-011 ## URANYL-FLUORIDE (²³³U) SOLUTIONS IN SPHERICAL STAINLESS STEEL VESSELS WITH REFLECTORS OF Be, CH₂ AND Be-CH₂ COMPOSITES ## **PART II** ## **Evaluator** Dave Heinrichs Lawrence Livermore National Laboratory > Internal Reviewers Rich Evarts Bill Lloyd **Independent Reviewers** Karla Elam Calvin Hopper Oak Ridge National Laboratory U233-SOL-THERM-011 #### **ACKNOWLEDGEMENTS** The author is pleased to acknowledge that this evaluation is primarily based on the unpublished work of H. Robert Ralston who was the principal experimenter for the *Falstaff* series of experiments. The author has also relied heavily on unpublished work by J. Carothers, F. A. Kloverstrom, O. C. Kolar and A. J. Reyenga. The author is grateful to Luiz Leal of Oak Ridge National Laboratory (ORNL) for providing the most recent evaluation^a of the resonance parameters of ²³³U in ENDF-6 format. The author is indebted to Red Cullen for processing these parameters into point-wise (continuous) cross-sections in ENDF-6 format using PREPRO^b and to Ed Lent for translating this ASCII cross-section data into the binary COG library designated as "RED2002" in this evaluation. i ^a ORNL/TM-2000/372, ENDF-365, *R-Matrix Resonance Analysis and Statistical Properties of the Resonance Parameters of 233U in the Neutron Energy Range from Thermal to 600 eV*, L.C. Leal, H. Derrien, J.A. Harvey, K.H. Gruber, N.M. Larson, and R.R. Spencer, March 2001. ^b IAEA-NDS-39, Rev. 10, PREPRO2000: The 2000 ENDF/B Pre-Processing Codes, D.E. Cullen, April 1, 2000. U233-SOL-THERM-011 # URANYL-FLUORIDE (²³³U) SOLUTIONS IN SPHERICAL STAINLESS STEEL VESSELS WITH REFLECTORS OF Be, CH₂ AND Be-CH₂ COMPOSITES IDENTIFICATION NUMBER: U233-SOL-THERM-011 SPECTRA **KEY WORDS:** acceptable, beryllium, beryllium-reflected, critical experiments, Falstaff, homogeneous solution, polyethylene, polyethylene-reflected, solution, sphere, spherical assembly, ²³³U, uranyl-fluoride, water-moderated #### 1.0 DETAILED DESCRIPTION #### 1.1 Overview of Experiment A series of criticality studies were performed at the Lawrence Livermore National Laboratory in the late 1950's using aqueous solutions of ²³³U in the form of UO₂F₂ stabilized with 0.3% by weight of HF. These experiments were assigned the program name *Falstaff*. The ²³³U concentration in these experiments ranged from 0.13 to 0.87 kg/l. Eight type 347 stainless steel spheres ranging in inner radius from 7.87 to 12.45 cm were available for use as containers for the solutions. The scope of this evaluation is limited to the experiments involving the four lowest concentrations of uranyl-fluoride solution with 0.45, 0.37, 0.24 and 0.13 kg (233 U)/l. Reflectors of beryllium, polyethylene and beryllium-polyethylene composites were used. Thirty-one configurations are evaluated and accepted as criticality-safety benchmark models. Fission rate data calculated by the evaluator (see Appendix B) show that twenty-six of these configurations have over 50% of the fissions occurring in the thermal energy range and these configurations are therefore classified as "THERMAL". Five of the configurations have less than 50% of the fissions occurring in any of the fast, intermediate or thermal energy range and therefore are classified as "MIXED". These "THERMAL" and "MIXED" experiments – together with the "INTERMEDIATE" and "MIXED" experiments previously evaluated in U233-SOL-INTER-001 – complete the *Falstaff* series. ## 1.2 <u>Description of Experimental Configuration</u> Photographs of the experimental assembly and equipment are provided as Figures 1 - 3. A view of the vertical lift machine with an experimental assembly is provided in Figure 1. One stainless steel hollow spherical vessel is located in the central cavity of the lower set of nested hemispherical reflector shells. The lower assembly is positioned on the hydraulic ram. The tube used to transfer solution into the experimental vessel is shown in the lower part of this figure. The upper-reflector hemispherical shells were suspended by a support rod from the upper fixed support structure of the vertical lift machine. The lower subassembly was remotely raised by the hydraulic ram to seat within the upper reflector hemispherical shells to complete the experimental assembly configuration. Positive-stop spacers were sometimes used to perform an assembly in steps at known separation distances between top and bottom reflector halves. A portion of the solution handling system is shown in Figure 2. Figure 3 shows seven of the eight available spherical vessels in their storage box. A total of eight different spherical shell sizes, each constructed of type 347 stainless steel (SS-347), with an average wall thickness of about 0.019 inch, were used in the *Falstaff* experiments. The nominal outer diameter, measured capacities and inner diameters calculated from the measured capacities of these shells are given in Table 1. | Sphere No. | Nominal Outer
Diameter (inches) | Measured Capacity
(grams of water) | Calculated Inner
Diameter (inches) | |------------|------------------------------------|---------------------------------------|---------------------------------------| | 1 | 6.3 | 2043.82 | 6.198 | | 2 | 6.8 | 2586.31 | 6.705 | | 3 | 7.2 | 3061.72 | 7.093 | | 4 | 7.7 | 3779.80 | 7.609 | | 5 | 8.1 | 4396.27 | 8.002 | | 6 | 8.6 | 5275.53 | 8.503 | | 7 | 9.1 | 6230.69 | 8.988 | | 8 | 9.9 | 8095.95 | 9.808 | Table 1. Dimensions and Capacities of the Spherical Vessels. The calculated inner diameters were based on the measured capacities by assuming one gram of water is equivalent to one milliliter of volume as stated by the experimenter (see Section 2.2.1). Figure 1. View of the Vertical Lift Machine with an Assembly. Figure 2. View Showing the Connection to the Solution Handling System. Figure 3. Storage Box for the Stainless Steel Spherical Solution Vessels. #### U233-SOL-THERM-011 **1.2.1 Description of the Experimental Procedure -** The first series of experiments performed with each concentration of uranyl-fluoride solution were safety tests to determine the multiplication of the unreflected spheres. These experiments commenced with the smallest spheres which were certain to be subcritical. A plot of the measured reciprocal multiplication (1/M) versus sphere radius was used to estimate the unreflected critical radius for each solution by extrapolation. These extrapolations result in large experimental uncertainties; and consequently, these experiments are not evaluated but are included in Section 1.4. Following the unreflected experiments, measurements using the thinnest reflectors with the smallest sphere were performed. Subsequent reflector shells were then added in accordance with the shape of the reciprocal multiplication curve versus reflector thickness. The available nesting reflector shells were designed so that steps of 0.5 cm in reflector thickness were available in the expected critical region. When the multiplication was expected to exceed fifty, closure was carried out in steps of decreasing separation between top and bottom reflector halves using positive-stops. Multiplications in excess of one hundred were not exceeded. Criticality was predicted by extrapolation from the measured reciprocal multiplication measurements. This experimental procedure was then repeated for the next largest sphere and so on. 1.2.2 Summary of the Experimental Results - A summary of the critical parameters for the four lowest concentration aqueous uranyl-fluoride solution experiments is given in Table 2. Note that experimental uncertainties in the critical reflector thickness were recorded only for the beryllium reflected experiments. These experimental uncertainties are assumed to be at the 1- σ confidence
level. Details of the ²³³U solution are provided in Section 1.3. Note that with composite beryllium-polyethylene reflectors, the beryllium is inside the polyethylene. No temperature measurements were performed; however, the experimenters assumed constant ambient temperatures of about 20°C (70°F) for the entire series of experiments. #### U233-SOL-THERM-011 Table 2. Critical Parameters for Spherical Systems of ²³³U in Aqueous Solution. | Solution Sphere No. No. | | ²³³ U Mass | Critical Reflector Thickness (cm) | | | | |-------------------------|---|-----------------------|-----------------------------------|---------------------|----------------------------|--| | | | (kg) | Be | CH ₂ | Be + CH ₂ | | | | 1 | 0.92 | $9.17 \pm 1.0\%$ | | | | | | 2 | 1.16 | $6.58 \pm 1.0\%$ | | | | | 4 | 3 | 1.37 | $5.27 \pm 1.5\%$ | ^(a) | 1.14 + 4.88 | | | 4 | 4 | 1.69 | $3.89 \pm 1.0\%$ | | | | | | 5 | 1.97 | $2.90 \pm 5.0\%$ | 3.57 | | | | | 6 | 2.36 | $1.99 \pm 4.0\%$ | | | | | | 7 | 2.79 | $1.24 \pm 4.0\%$ | 1.68 | | | | | 1 | 0.75 | $9.73 \pm 1.0\%$ | | | | | | 2 | 0.95 | $7.09 \pm 1.0\%$ | | | | | 5 | 3 | 1.13 | $5.59 \pm 1.5\%$ | ^(a) | 1.14 + 6.20 | | | 3 | 4 | 1.39 | $4.09 \pm 1.5\%$ | | | | | | 5 | 1.62 | $3.20 \pm 1.0\%$ | 4.04 | | | | | 6 | 1.94 | $2.08 \pm 3.0\%$ | | | | | | 7 | 2.29 | $1.37 \pm 4.0\%$ | 2.03 ^(b) | | | | | 1 | 0.48 | $11.91 \pm 2.0\%$ | | | | | | 2 | 0.61 | $8.53 \pm 1.0\%$ | | | | | (| 3 | 0.73 | $6.68 \pm 0.5\%$ | ^(a) | 1.14 + 16.0 ^(c) | | | 6 | 4 | 0.90 | $4.90 \pm 0.6\%$ | | | | | | 5 | 1.04 | $3.82 \pm 0.9\%$ | 5.51 | | | | | 6 | 1.25 | $2.76 \pm 12.0\%$ (d) | | | | | | 7 | 1.48 | $1.52 \pm 10.0\%$ (d) | 2.21 ^(e) | | | | | 3 | 0.38 | $10.08 \pm 1.0\%$ | | | | | | 4 | 0.47 | $7.49 \pm 1.0\%$ | | | | | 7 | 5 | 0.55 | $5.92 \pm 1.0\%$ | | | | | / | 6 | 0.66 | $4.42 \pm 0.7\%$ | | | | | | 7 | 0.78 | $3.30 \pm 1.3\%$ | | | | | | 8 | 1.01 | $1.84 \pm 4.0\%$ | | | | - (a) The critical thickness exceeds 8.38 cm and an infinite thickness of CH₂ is probably subcritical. - (b) The critical thickness is "subject to some uncertainty". - (c) The critical thickness is "very uncertain". - (d) The calculated Δk_{eff} for this uncertainty exceeds 1% and therefore this experiment has been dismissed from consideration as a benchmark. - (e) The Δk_{eff} for this uncertainty may exceed 1% and therefore this experiment has been dismissed from consideration as a benchmark. ## 1.3 <u>Description of Material Data</u> Seven concentrations of aqueous uranyl-fluoride solutions were used in the *Falstaff* series of experiments, starting with the most concentrated and diluting as the series progressed. The properties of the four lowest concentration solutions are provided in Table 3. Table 3. Properties of Aqueous Uranyl-Fluoride Solutions. | Solution Density | Fissile Concentration | HF Content | | |------------------|--|------------|--| | 1.4960 g/ml | $0.45 g^{233} U/ml$ | 0.3 wt.% | | | ^(a) | $0.37 \mathrm{g}^{233} \mathrm{U/ml}$ | 0.3 wt.% | | | ^(a) | $0.24 \mathrm{g}^{233} \mathrm{U/ml}$ | 0.3 wt.% | | | ^(a) | $0.13 \text{ g}^{233}\text{U/ml}$ | 0.3 wt.% | | ⁽a) Density unrecorded. The isotopic composition of the elemental uranium is given in Table 4. Note that these isotopic values represent the average of several determinations and therefore sum to 100.0073% instead of exactly 100%. Unfortunately, no information on uncertainties, thorium content, or other impurities are available Table 4. Uranium Isotopics. | Isotope | Percent (by weight) | |------------------|---------------------| | ²³² U | 0.0020 | | ^{233}U | 98.562 | | ^{234}U | 1.0755 | | ²³⁵ U | 0.0398 | | ^{238}U | 0.328 | The spherical vessels were made of about 0.019-inch-thick type 347 stainless steel with the elemental composition listed in Table 5. The density of type 347 stainless steel is 8.0 g/cm³. #### U233-SOL-THERM-011 Table 5. Type 347 Stainless Steel Material Specifications. | Element | Percent by weight | |---------|-------------------| | | | | Cr | 17 – 19 | | Ni | 9 – 13 | | Mn | ≤2 | | Nb + Ta | 0.3 - 1.0 | | Si | ≤0.75 | | С | ≤0.08 | | P | ≤0.045 | | S | ≤0.030 | | Fe | Balance | All reflectors were an assemblage of close-fitting nesting spherical shells with the innermost shells fitting closely around the solution container. Tolerance gaps at the spherical interfaces introduced small voids into the reflectors. All reflectors had 0.25-inch-diameter support holes (diametrically opposed at the pole) in both the top and bottom. These holes extended from the outer surface of the reflector to the surface of the solution container. There were two additional 0.25-inch holes (diametrically opposed at the waist) to accommodate the fill tube for introduction of the ²³³U solution. The bottom hemispherical shell of every beryllium reflector had a 2-inch-diameter hole extending all the way through it. These holes were plugged by the removed section, leaving only a 0.0625-inch gap around the plug. There was also an unplugged 0.5-inch diameter hole extending through each beryllium reflector to accommodate placement of a neutron source. However, no external neutron sources were used in these experiments. The various gaps and holes in the reflectors result in an average bulk reflector density which is slightly lower than the nominal value. The beryllium reflector had an effective average bulk density of 1.82 $\pm 0.02/-0.03$ g/cm³ as listed in Table 6. This was determined experimentally by weighing and measuring various sets of nested shells. The average bulk density of the polyethylene reflectors was not measured but was assumed by the experimenter to be about 0.92 g/cm³. Hence, a reasonable estimate of the range is 0.92 ± 0.010 g/cm³ as entered in Table 6. #### U233-SOL-THERM-011 Table 6. Reflector Average Bulk Densities. | Reflector Material | Average Bulk Density (g/cm ³) | | | | | |--------------------|---|---------|---------|--|--| | | Minimum | Nominal | Maximum | | | | Beryllium | 1.79 | 1.82 | 1.84 | | | | Polyethylene | 0.91 | 0.92 | 0.93 | | | Typical commercially pure beryllium metal contains at most 2 percent by weight of beryllium oxide with other minor impurities as listed in Table 7. Polyethylene is CH₂. Table 7. Typical Specification for Beryllium Metal. | Impurity | Maximum Weight Percentage | | | |-----------------------|---------------------------|--|--| | BeO | 2.00 | | | | N | 0.06 | | | | С | 0.15 | | | | Fe | 0.20 | | | | Al | 0.16 | | | | Si | 0.12 | | | | Mg | 0.08 | | | | Mn | 0.05 | | | | Sum of Cr, Cu, Ni, Ti | 0.20 | | | | Any other | 0.05 | | | #### 1.4 **Supplemental Experimental Measurements** The detailed results of the safety tests with the unreflected spheres described in Section 1.2.1 have yet to be found. However, the experimenter's estimates of the critical radius extrapolated from these experiments are reported below. Table 8. Extrapolated Critical Radii. (a) | Solution | Radius | |----------|-----------------| | No. | (cm) | | 4 | $12.85 \pm 7\%$ | | 5 | $13.0 \pm 6\%$ | | 6 | $13.2 \pm 18\%$ | | 7 | $14.5 \pm 30\%$ | (a) Bare 0.019" SS-347 Spheres. #### 2.0 EVALUATION OF EXPERIMENTAL DATA This section reports the results of sensitivity studies performed to determine the effect on k_{eff} of various uncertainties in the reported experimental data. A summary of the benchmark or nominal values of the significant parameters and their uncertainty range is provided in Table 9. The details of the calculated uncertainties in k_{eff} , or Δk_{eff} , for each parameter applicable to each experiment, are provided in the following sections. These k_{eff} calculations used the SAN code, which is a LLNL^a-modified (short) version of ANISN, with a 92-energy-group cross-section library. The calculations were run in the $S_{12}P_3$ approximation. An estimate of the total minimum, maximum, and standard uncertainty for each experiment is provided in Section 2.5. Table 9. Uncertainties in the *Falstaff* Experiments. | Material | Parameter | Benchmark-Model or Nominal Value | Uncertainty
Range | |-----------|--------------------------------|----------------------------------|---------------------------| | Solution | ²³³ U concentration | 0.4469 g/ml | ± 0.0015 g/ml | | No. 4 | Solution density | 1.4960 g/ml | $\pm 0.0005 \text{ g/ml}$ | | Solution | ²³³ U concentration | 0.3669 g/ml | \pm 0.0012 g/ml | | No. 5 | Solution density | 1.4104 g/ml | ± 0.0006 g/ml | | Solution | ²³³ U concentration | 0.2363 g/ml | \pm 0.0014 g/ml | | No. 6 | Solution density | 1.2640 g/ml | \pm 0.0004 g/ml | | Solution | ²³³ U concentration | 0.1244 g/ml | $\pm 0.0005 \text{ g/ml}$ | | No. 7 | Solution density | 1.1387 g/ml | $\pm 0.0002 \text{ g/ml}$ | | All | HF content (all solutions) | 0.3 wt.% | ± 0.05 wt.% | | Solutions | ²³³ U enrichment | 98.562 wt.% | \pm 0.005 wt.% | | | Capacity | See Table 1 | +0.5 vol.% | | SS-347 | Chemical composition | See Table 5 | See Section 2.2 | | Vessel | Thickness | 0.019 inch | ± 0.0005 inch | | | Density | 8.0 g/cm ³ | $\pm 0.05 \text{ g/cm}^3$ | | | Critical thickness | See Table 2 | ±1% to 3% | | Reflector | Bulk density | See Table 6 | See Table 6 | | | Impurities in beryllium | Pure | See Table 7 | | Exterior | Room return | None | See Section 2.3 | ^a Lawrence Livermore National Laboratory #### U233-SOL-THERM-011 The benchmark-model values are the same as the nominal experimental values described in Section 1 with two exceptions: - (1) the fissile 233 U concentrations are taken as 0.4469 ± 0.0015 g/ml, 0.3669 ± 0.0012 , 0.2363 ± 0.0014 and 0.1244 ± 0.0005 g/ml as shown in Table 9 and discussed in Section 2.1.1; and, - (2) the total solution densities are taken as 1.4960 ± 0.0005 , 1.4104 ± 0.0006 , 1.2640 ± 0.0004 and 1.1387 ± 0.0002 g/ml as shown in Table 9 and discussed in Section 2.1.3 and Appendix C. The total
uncertainty is principally due to the uncertainties in the critical reflector thickness, reflector density, beryllium impurities, fissile concentration and vessel capacity. The other sources of uncertainty are not significant. #### U233-SOL-THERM-011 #### 2.1 Solution Uncertainties **2.1.1 Uncertainty in Fissile Concentrations -** The fissile 233 U concentration of the solutions are reported as 0.45, 0.37, 0.24 and 0.13 g^{233} U/ml; however, the values 0.4469 ± 0.0015 , 0.3669 ± 0.0012 , 0.2363 ± 0.0014 and 0.1244 ± 0.0005 g^{233} U/ml may be obtained by dividing each reported critical mass given in Table 2 by the measured vessel capacity listed in Table 1. The capacities are given as grams of water and the water density is assumed to be either 0.995 or 1.000 g/cm³ as discussed in Section 2.2.1. This procedure results in an improved estimate of the actual solution densities with the specified mean and standard deviation consistent with the reported value. A sensitivity study was performed to consider changes of 0.4469 ± 0.0015 , 0.3669 ± 0.0012 , 0.2363 ± 0.0014 and 0.1244 ± 0.0005 g²³³U/ml in the fissile concentration with the total solution density unchanged. Consequently an increase in fissile content results in a decrease in the moderator content; and, vice versa. The results of these sensitivity calculations are reported together with the benchmark-model results in Table 10. The uncertainty in fissile 233 U concentration is significant but does not exceed Δk_{eff} of ± 0.0014 for any experiment. Table 10. Effect on k_{eff} due to Uncertainty in the Fissile Concentration. | Solution No. | Sphere | Reflector | 2 | ²³³ U Concentration | | | | | |--------------|--------|--------------------|---------|--------------------------------|---------|---------------------------|--|--| | | No. | | Maximum | Nominal | Minimum | Change (Δk_{eff}) | | | | 4 | 1 | Ве | 0.99323 | 0.99402 | 0.99482 | +0.0008
-0.0008 | | | | 4 | 2 | Ве | 0.99341 | 0.99432 | 0.99525 | +0.0009
-0.0009 | | | | 4 | 3 | Ве | 0.99590 | 0.99690 | 0.99791 | +0.0010
-0.0010 | | | | 4 | 3 | Be+CH ₂ | 0.99607 | 0.99698 | 0.99792 | +0.0009
-0.0009 | | | | 4 | 4 | Ве | 0.99642 | 0.99752 | 0.99864 | +0.0011
-0.0011 | | | | 4 | 5 | Ве | 0.98736 | 0.98856 | 0.98977 | +0.0012
-0.0012 | | | | 4 | 5 | CH ₂ | 0.99356 | 0.99465 | 0.99575 | +0.0011
-0.0011 | | | | 4 | 6 | Ве | 0.98389 | 0.98518 | 0.98650 | +0.0013
-0.0013 | | | | 4 | 7 | Ве | 0.97936 | 0.98076 | 0.98218 | +0.0014
-0.0014 | | | | 4 | 7 | CH ₂ | 0.99851 | 0.99986 | 1.00122 | +0.0014
-0.0014 | | | ## U233-SOL-THERM-011 Table 10 (cont'd). Effect on $k_{\text{eff}}\,\text{due}$ to Uncertainty in the Fissile Concentration. | Solution No. | Sphere | Reflector | r ²³³ U Concentration | | | Change | |--------------|--------|--------------------|----------------------------------|---------|---------|--------------------| | | No. | | Maximum | Nominal | Minimum | (Δk_{eff}) | | 5 | 1 | Ве | 0.99384 | 0.99437 | 0.99490 | +0.0005
-0.0005 | | 5 | 2 | Ве | 1.00016 | 1.00079 | 1.00142 | +0.0006
-0.0006 | | 5 | 3 | Ве | 1.00030 | 1.00100 | 1.00170 | +0.0007
-0.0007 | | 5 | 3 | Be+CH ₂ | 1.00326 | 1.00390 | 1.00454 | +0.0006
-0.0006 | | 5 | 4 | Ве | 0.99945 | 1.00024 | 1.00103 | +0.0008
-0.0008 | | 5 | 5 | Ве | 0.99881 | 0.99967 | 1.00053 | +0.0009
-0.0009 | | 5 | 5 | CH ₂ | 1.00307 | 1.00385 | 1.00462 | +0.0008
-0.0008 | | 5 | 6 | Ве | 0.98517 | 0.98613 | 0.98708 | +0.0010
-0.0010 | | 5 | 7 | Ве | 0.98553 | 0.98657 | 0.98760 | +0.0010
-0.0010 | | 6 | 1 | Ве | 0.98681 | 0.98694 | 0.98706 | +0.0001
-0.0001 | | 6 | 2 | Ве | 0.99927 | 0.99955 | 0.99980 | +0.0003
-0.0003 | | 6 | 3 | Be | 1.00140 | 1.00178 | 1.00215 | +0.0004
-0.0004 | | 6 | 4 | Ве | 1.00216 | 1.00267 | 1.00316 | +0.0005
-0.0005 | | 6 | 5 | Ве | 0.99986 | 1.00046 | 1.00104 | +0.0006
-0.0006 | | 6 | 5 | CH ₂ | 1.00195 | 1.00248 | 1.00299 | +0.0005
-0.0005 | | 7 | 3 | Ве | 0.98879 | 0.98835 | 0.98791 | +0.0004
-0.0004 | | 7 | 4 | Ве | 1.00046 | 1.00008 | 0.99970 | +0.0004
-0.0004 | | 7 | 5 | Ве | 1.00222 | 1.00189 | 1.00155 | +0.0003
-0.0003 | | 7 | 6 | Ве | 1.00363 | 1.00335 | 1.00307 | +0.0003
-0.0003 | | 7 | 7 | Ве | 1.00458 | 1.00436 | 1.00412 | +0.0002
-0.0002 | | 7 | 8 | Ве | 1.00531 | 1.00516 | 1.00501 | +0.0002
-0.0002 | Revision: 0 Date: April 8, 2002 Page 14 of 47 #### U233-SOL-THERM-011 - **2.1.2 Uncertainty in HF Content** The solution contained 0.3 wt.% hydrofluoric acid (HF) content. A sensitivity study was performed to consider changes of ± 0.05 wt.% in HF content with the total solution density unchanged. The result of this change is to replace a small amount of HF with water or vice-versa. This only slightly alters the H^{233} U ratio with small changes also in the oxygen and fluorine content. The uncertainty in HF content is insignificant and does not exceed Δk_{eff} of ± 0.0003 for any experiment. - **2.1.3** Uncertainty in Solution Density The total solution density is reported only for solution number 4 as 1.4960 g/ml. The number of significant digits provides some indication of the accuracy of this value. The uncertainty in the density for solution number 4 was estimated as ± 0.0005 g/ml. The total solution densities for solution numbers 5, 6 and 7 were calculated using the following semiempirical formula: $$\rho = (0.99925 \pm 0.00001) + (1.1206 \pm 0.0016) \cdot C(^{233}U)$$ where ρ is the total solution density in g/ml and C(233 U) is the fissile concentration in g(233 U)/ml. The densities and uncertainties thus obtained for solutions 5, 6 and 7 are 1.4104 \pm 0.0006, 1.2640 \pm 0.0004 and 1.1378 \pm 0.0002 as given in Table 9. The derivation of this formula is provided in Appendix C. The uncertainty for each solution component was simply scaled by the factor corresponding to the relative increase (or decrease) in total solution density. The uncertainty due to total solution density is insignificant and does not exceed Δk_{eff} of ± 0.0004 for any experiment. **2.1.4 Uncertainty in Enrichment** – The 233 U enrichment is specified as 98.562 percent by weight as given in Table 4. The number of significant digits in this value is an indication of accuracy. The sensitivity to enrichment or assay was considered by altering this value by ± 0.005 wt.%. An increase in 233 U content was offset by a corresponding decrease in 238 U content and vice versa. The uncertainty in k_{eff} due to enrichment is negligible and does not exceed Δk_{eff} of ± 0.00004 for any experiment. #### U233-SOL-THERM-011 #### 2.2 <u>Vessel Uncertainties</u> **2.2.1 Uncertainty in Vessel Capacity** – The capacities of the type 347 stainless steel vessels are given in Table 1 in grams of water. The benchmark specification assumes 1 gram of water is equivalent to 1 milliliter of volume as stated by the experimenter. However, it may be that the actual density of water used in performing these measurements was somewhat lower if the measurements were performed on a hot day. The sensitivity study considered this uncertainty by comparing the benchmark-model calculations to those where the capacity has been increased 0.5% by volume. This corresponds to a water density at temperatures in excess of 85 degrees F (or 30 degrees C). The vessel wall and reflector thicknesses are unchanged. Material compositions are unchanged from the benchmark-model values described in Section 3.3. The results of these calculations are given in Table 10 below. Table 10. Effect on k_{eff} due to Vessel Capacity. | Solution No. | Sphere No. | Reflector | ctor Vessel Capacity Increase | | Change | |--------------|------------|--------------------|-------------------------------|---------|--------------------| | | • | | 0.5% | None | (Δk_{eff}) | | 4 | 1 | Be | 0.99554 | 0.99402 | +0.0015 | | 4 | 2 | Be | 0.99582 | 0.99432 | +0.0015 | | 4 | 3 | Be | 0.99840 | 0.99690 | +0.0015 | | 4 | 3 | Be+CH ₂ | 0.99836 | 0.99698 | +0.0014 | | 4 | 4 | Be | 0.99903 | 0.99752 | +0.0015 | | 4 | 5 | Be | 0.99008 | 0.98856 | +0.0015 | | 4 | 5 | CH ₂ | 0.99605 | 0.99465 | +0.0014 | | 4 | 6 | Be | 0.98675 | 0.98518 | +0.0016 | | 4 | 7 | Be | 0.98237 | 0.98076 | +0.0016 | | 4 | 7 | CH ₂ | 1.00140 | 0.99986 | +0.0015 | #### U233-SOL-THERM-011 Table 10 (cont'd). Effect on $k_{\text{eff}}\,\text{due}$ to Vessel Capacity. | Solution No. | Sphere No. | Reflector | Vessel Capac | city Increase | Change | |--------------|------------|--------------------|--------------|---------------|--------------------| | | - | | 0.5% | None | (Δk_{eff}) | | 5 | 1 | Be | 0.99590 | 0.99437 | +0.0015 | | 5 | 2 | Be | 1.00230 | 1.00079 | +0.0015 | | 5 | 3 | Be | 1.00251 | 1.00100 | +0.0015 | | 5 | 3 | Be+CH ₂ | 1.00527 | 1.00390 | +0.0014 | | 5 | 4 | Be | 1.00176 | 1.00024 | +0.0015 | | 5 | 5 | Be | 1.00120 | 0.99967 | +0.0015 | | 5 | 5 | CH ₂ | 1.00524 | 1.00385 | +0.0014 | | 5 | 6 | Be | 0.98769 | 0.98613 | +0.0016 | | 5 | 7 | Be | 0.98818 | 0.98657 | +0.0016 | | 6 | 1 | Be | 0.98849 | 0.98694 | +0.0016 | | 6 | 2 | Be | 1.00106 | 0.99955 | +0.0015 | | 6 | 3 | Be | 1.00329 | 1.00178 | +0.0015 | | 6 | 4 | Be | 1.00418 | 1.00267 | +0.0015 | | 6 | 5 | Be | 1.00198 | 1.00046 | +0.0015 | | 6 | 5 | CH ₂ | 1.00385 | 1.00248 | +0.0014 | | 7 | 3 | Be | 0.98984 | 0.98835 | +0.0015 | | 7 | 4 | Be | 1.00156 | 1.00008 | +0.0015 | | 7 | 5 | Be | 1.00336 | 1.00189 | +0.0015 | | 7 | 6 | Be | 1.00483 | 1.00335 | +0.0015 | | 7 | 7 | Be | 1.00585 | 1.00436 | +0.0015 | | 7 | 8 | Be | 1.00671 | 1.00516 | +0.0016 | The uncertainty due to vessel capacity is significant but does not exceed Δk_{eff} of -0.0000/+0.0016 for any experiment. Revision: 0 Date: April 8, 2002 Page 17 of 47 #### U233-SOL-THERM-011 **2.2.2 Uncertainty in Steel Composition** – The elemental composition of type 347 stainless steel is given in
Table 5. The sensitivity study investigated the uncertainty in composition of the actual vessels by comparing the nominal alloy specification (without impurities) to hypothetical compositions which minimize and maximize thermal neutron absorption as shown Table 11. Table 11. Hypothetical Type 347 Stainless Steel Compositions. | Element | σ ^(a) at 2200 m/s | Percent by Weight (wt.%) | | | |---------|------------------------------|--------------------------|---------|-------------| | | (barns) | Minimum (a) | Nominal | Maximum (a) | | Fe | 2.56 | 72.095 | 71. | 65. | | Cr | 3.07 | 17. | 18. | 19. | | Ni | 4.49 | 9. | 11. | 13. | | Mn | 13.3 | | | 2. | | Nb | 1.15 | 1. | | | | Та | 20.6 | | | 1. | | Si | 0.171 | 0.75 | | | | С | 0.0035 | 0.08 | | | | P | 0.172 | 0.045 | | | | S | 0.52 | 0.030 | | | ⁽a) In terms of neutron absorption. Revision: 0 Date: April 8, 2002 Page 18 of 47 ## U233-SOL-THERM-011 The results of the $k_{\text{eff}}\,\text{calculations}$ are recorded in Table 12. Table 12. Effect on $k_{\text{eff}}\,\text{due}$ to Uncertainty in the SS-347 Composition. | Solution | Sphere | Reflector | Neutro | on Absorption in | n SS-347 | Change | |----------|--------|--------------------|---------|------------------|----------|--------------------| | No. | No. | | Minimum | Nominal | Maximum | (Δk_{eff}) | | 4 | 1 | Ве | 0.99408 | 0.99402 | 0.99277 | +0.0001
-0.0013 | | 4 | 2 | Ве | 0.99435 | 0.99432 | 0.99341 | +0.0000
-0.0009 | | 4 | 3 | Be | 0.99691 | 0.99690 | 0.99619 | +0.0000
-0.0007 | | 4 | 3 | Be+CH ₂ | 0.99716 | 0.99698 | 0.99585 | +0.0002
-0.0011 | | 4 | 4 | Be | 0.99751 | 0.99752 | 0.99707 | +0.0000
-0.0005 | | 4 | 5 | Be | 0.98853 | 0.98856 | 0.98831 | +0.0000
-0.0003 | | 4 | 5 | CH ₂ | 0.99475 | 0.99465 | 0.99394 | +0.0001
-0.0007 | | 4 | 6 | Be | 0.98514 | 0.98518 | 0.98513 | +0.0001
-0.0001 | | 4 | 7 | Be | 0.98071 | 0.98076 | 0.98087 | +0.0001
-0.0000 | | 4 | 7 | CH ₂ | 0.99987 | 0.99986 | 0.99967 | +0.0000
-0.0002 | | 5 | 1 | Ве | 0.99446 | 0.99437 | 0.99300 | +0.0001
-0.0014 | | 5 | 2 | Ве | 1.00084 | 1.00079 | 0.99974 | +0.0001
-0.0011 | | 5 | 3 | Ве | 1.00103 | 1.00100 | 1.00019 | +0.0000
-0.0008 | | 5 | 3 | Be+CH ₂ | 1.00412 | 1.00390 | 1.00261 | +0.0002
-0.0013 | | 5 | 4 | Ве | 1.00024 | 1.00024 | 0.99971 | +0.0000
-0.0005 | | 5 | 5 | Ве | 0.99966 | 0.99967 | 0.99933 | +0.0000
-0.0003 | | 5 | 5 | CH ₂ | 1.00398 | 1.00385 | 1.00302 | +0.0001
-0.0008 | | 5 | 6 | Ве | 0.98609 | 0.98613 | 0.98603 | +0.0000
-0.0001 | | 5 | 7 | Ве | 0.98652 | 0.98657 | 0.98663 | +0.0001
-0.0000 | Revision: 0 Date: April 8, 2002 Page 19 of 47 #### U233-SOL-THERM-011 Table 12 (cont'd). Effect on k_{eff} due to Uncertainty in the SS-347 Composition. | Solution | Sphere | Reflector | Neutro | Neutron Absorption in SS-347 | | | | |----------|--------|-----------|----------|------------------------------|---------|---------------------------|--| | No. | No. | | Minimum | Nominal | Maximum | Change (Δk_{eff}) | | | 6 | 1 | Be | 0.98709 | 0.98694 | 0.98524 | +0.0002 | | | | | | | | | -0.0017 | | | 6 | 2 | Be | 0.99964 | 0.99955 | 0.99819 | +0.0001
-0.0014 | | | | 2 | | | | | +0.0000 | | | 6 | 3 | Be | 1.00184 | 1.00178 | 1.00069 | -0.0011 | | | 6 | 4 | Be | 1.00269 | 1 00267 | 1.00100 | +0.0000 | | | 0 | 7 | БС | 1.00269 | 1.00267 | 1.00190 | -0.0008 | | | 6 | 5 | Be | 1.00047 | 1.00046 | 0.99991 | +0.0000 | | | | | | 1.00017 | 1.00010 | 0.55551 | -0.0006 | | | 6 | 5 | CH_2 | 1.00267 | 1.00248 | 1.00137 | +0.0002 | | | | | | | | | -0.0011 | | | 7 | 3 | Be | 0.98852 | 0.98835 | 0.98672 | +0.0002 | | | | | | | | | -0.0016 | | | 7 | 4 | Be | 1.00020 | 1.00008 | 0.99879 | +0.0001
-0.0013 | | | _ | _ | _ | | | | +0.0001 | | | 7 | 5 | Be | 1.00197 | 1.00189 | 1.00086 | -0.0010 | | | 7 | 6 | Be | 1.002.40 | 1 00225 | 1.00262 | +0.0000 | | | / | O | De | 1.00340 | 1.00335 | 1.00262 | -0.0007 | | | 7 | 7 | Ве | 1.00437 | 1.00436 | 1.00387 | +0.0000 | | | , | , | 50 | 1.00437 | 1.00430 | 1.00387 | -0.0005 | | | 7 | 8 | Be | 1.00514 | 1.00516 | 1.00502 | +0.0001 | | | | | | 1.00511 | 1.00310 | 1.03502 | -0.0001 | | The uncertainty due to impurities present in type 347 stainless steel is significant but does not exceed Δk_{eff} of -0.0017/+0.0002 for any experiment. - **2.2.3 Uncertainty in Vessel Thickness** The thicknesses of the type 347 stainless steel vessel walls were measured and reported as about 0.019 inches. The sensitivity study investigated uncertainties in the actual vessel wall thickness by assuming a 0.0005 inch (or half-a-mil) change which is consistent with the accuracy of the reported value. The resultant changes in k_{eff} are insignificant and do not exceed Δk_{eff} of ± 0.0002 in any experiment. - **2.2.4 Uncertainty in Steel Density** The nominal density of type 347 stainless steel is 8.0 g/cm³ as reported in Section 1.3. The sensitivity study investigated uncertainties in the density by considering a ± 0.05 g/cm³ change to the nominal value. The resultant changes in k_{eff} are negligible and do not exceed Δk_{eff} of ± 0.00003 for any experiment. #### U233-SOL-THERM-011 #### 2.3 Reflector Uncertainties **2.3.1 Uncertainty in the Critical Reflector Thickness** – Estimates of the experimental uncertainty in critical reflector thickness were recorded only for those experiments with reflection by beryllium metal as given in Table 2. The sensitivity study investigated this effect by calculating the k_{eff} for each system containing a beryllium metal reflector with the minimum and maximum thickness and comparing the result to the benchmark-model specification based on the nominal thickness. The resultant changes in k_{eff} are recorded in Table 13. No estimates of the experimental uncertainty in critical reflector thickness have been found to date for the spheres with composite beryllium-polyethylene or polyethylene reflectors. Consequently, the uncertainty in the critical thickness of a beryllium-polyethylene or polyethylene reflected sphere is estimated as equal to the uncertainty of the corresponding beryllium reflected sphere. The uncertainty due to the critical reflector thickness is significant but does not exceed Δk_{eff} of ± 0.0086 for any experiment. Table 13. Effect on k_{eff} due to the Uncertainty in the Critical Reflector Thickness. | Solution | Sphere | Reflector | Critical F | Reflector Thickr | ness (cm) | Change | |----------|--------|--------------------|------------|------------------|-----------|------------------------| | No. | No | | Minimum | Nominal | Maximum | $(\Delta k_{\rm eff})$ | | 4 | 1 | Be | 0.99197 | 0.99402 | 0.99603 | +0.0020
-0.0021 | | 4 | 2 | Be | 0.99214 | 0.99432 | 0.99648 | +0.0022
-0.0022 | | 4 | 3 | Ве | 0.99368 | 0.99690 | 1.00007 | +0.0032
-0.0032 | | 4 | 3 | Be+CH ₂ | 0.99578 | 0.99698 | 0.99813 | +0.0012
-0.0012 | | 4 | 4 | Ве | 0.99554 | 0.99752 | 0.99948 | +0.0020
-0.0020 | | 4 | 5 | Ве | 0.97971 | 0.98856 | 0.99715 | +0.0086
-0.0089 | | 4 | 5 | CH ₂ | 0.98803 | 0.99465 | 1.00073 | +0.0061
-0.0066 | | 4 | 6 | Be | 0.97949 | 0.98518 | 0.99078 | +0.0056
-0.0057 | | 4 | 7 | Ве | 0.97670 | 0.98076 | 0.98477 | +0.0040
-0.0041 | | 4 | 7 | CH ₂ | 0.99532 | 0.99986 | 1.00430 | +0.0044
-0.0045 | ## U233-SOL-THERM-011 Table 13 (cont'd). Effect on k_{eff} due to the Uncertainty in the Critical Reflector Thickness. | Solution | Sphere | Reflector | Critical I | Reflector Thicks | ness (cm) | Change | |----------|--------|--------------------|------------|------------------|-----------|-----------------------| | No. | No | | Minimum | Nominal | Maximum | $(\Delta k_{ m eff})$ | | 5 | 1 | Ве | 0.99243 | 0.99437 | 0.99629 | +0.0019 | | 3 | - | | 0.99243 | 0.99437 | 0.99029 | -0.0019 | | 5 | 2 | Ве | 0.99866 | 1.00079 | 1.00290 | +0.0021 | | | | | | | | -0.0021 | | 5 | 3 | Ве | 0.99782 | 1.00100 | 1.00415 | +0.0032 | | | | | | | | -0.0032
+0.0007 | | 5 | 3 | Be+CH ₂ | 1.00321 | 1.00390 | 1.00455 | -0.0007 | | _ | 4 | D - | | | | +0.0029 | | 5 | 4 | Be | 0.99727 | 1.00024 | 1.00318 | -0.0030 | | | 5 | Be | 0.00797 | 0.00067 | 1.00146 | +0.0018 | | 5 | | Вс | 0.99787 | 0.99967 | 1.00146 | -0.0018 | | 5 | 5 | CH ₂ | 1.00272 | 1.00385 | 1.00495 | +0.0011 | | 3 | _ | - 2 | 1.00272 | 1.00303 | 1.00473 | -0.0011 | | 5 | 6 | Be | 0.98180 | 0.98613 | 0.99039 | +0.0043 | | | | | | | | -0.0043 | | 5 | 7 | Be | 0.98225 | 0.98657 | 0.99083 | +0.0043 | | | | | | 1 | 1 | -0.0043 | | 6 | 1 | Ве | 0.98373 | 0.98694 | 0.99004 | +0.0031
-0.0032 | | | 2 | D. | | | | +0.0019 | | 6 | 2 | Be | 0.99760 | 0.99955 | 1.00146 | -0.0020 | | (| 3 | Be | 1.00077 | 1.00170 | 1.00270 | +0.0010 | | 6 | 3 | ВС | 1.00077 | 1.00178 | 1.00279 | -0.0010 | | 6 | 4 | Ве | 1.00148 | 1.00267 | 1.00385 | +0.0012 | | O . | | | 1.00140 | 1.00207 | 1.00303 | -0.0012 | | 6 | 5 | Be | 0.99879 | 1.00046 | 1.00212 | +0.0017 | | | | | | | | -0.0017 | | 6 | 5 | CH_2 | 1.00189 | 1.00248 | 1.00305 | +0.0006 | | | | | | 1 | 1 | -0.0006 | | 7 | 3 | Ве | 0.98677 | 0.98835 | 0.98991 | +0.0016
-0.0016 | | 7 | 4 | D | | | | +0.0018 | | 7 | 4 | Be | 0.99829 | 1.00008 | 1.00185 | -0.0018 | | 7 | 5 | Be | 1 00007 | 1.00100 | 1,00270 | +0.0018 | | , | 3 | DC | 1.00007 | 1.00189 | 1.00369 | -0.0018 | | 7 | 6 | Ве | 1.00214 | 1.00335 | 1.00456 | +0.0012 | | , | | | 1.00217 | 1.00555 | 1.00730 | -0.0012 | | 7 | 7 | Ве | 1.00232 | 1.00436 | 1.00638 | +0.0020 | | | | | | | | -0.0020 | | 7 | 8 | Be | 1.00065 | 1.00516 | 1.00960 | +0.0044 | | | | | | | | -0.0045 | Revision: 0 Date: April 8, 2002 Page 22 of 47 #### U233-SOL-THERM-011 **2.3.2** Uncertainty in Reflector Density – The average bulk density of the beryllium and polyethylene reflectors and the uncertainties in these values are reported in Table 6 and discussed in detail in Section 1.3. The sensitivity study investigated the effects of these uncertainties by calculating k_{eff} for each system using
the minimum and maximum densities and comparing to the benchmark-model value based on the nominal density. The results are provided in Table 14. Table 14. Effect on k_{eff} due to Uncertainty in Reflector Density. | Solution | Sphere | Reflector |] | Reflector Densi | ity | Change | |----------|--------|--------------------|---------|-----------------|---------|-----------------------------| | No. | No. | | Minimum | Nominal | Maximum | $(\Delta k_{\mathrm{eff}})$ | | 4 | 1 | Ве | 0.98660 | 0.99402 | 0.99894 | +0.0049
-0.0074 | | 4 | 2 | Ве | 0.98764 | 0.99432 | 0.99877 | +0.0045
-0.0067 | | 4 | 3 | Be | 0.99089 | 0.99690 | 1.00091 | +0.0040
-0.0060 | | 4 | 3 | Be+CH ₂ | 0.99337 | 0.99698 | 0.99994 | +0.0030
-0.0036 | | 4 | 4 | Be | 0.99248 | 0.99752 | 1.00088 | +0.0034
-0.0050 | | 4 | 5 | Ве | 0.98442 | 0.98856 | 0.99132 | +0.0028
-0.0041 | | 4 | 5 | CH ₂ | 0.99237 | 0.99465 | 0.99689 | +0.0022
-0.0023 | | 4 | 6 | Be | 0.98209 | 0.98518 | 0.98725 | +0.0021
-0.0031 | | 4 | 7 | Ве | 0.97870 | 0.98076 | 0.98214 | +0.0014
-0.0021 | | 4 | 7 | CH ₂ | 0.99826 | 0.99986 | 1.00145 | +0.0016
-0.0016 | | 5 | 1 | Ве | 0.98702 | 0.99437 | 0.99925 | +0.0049
-0.0074 | | 5 | 2 | Ве | 0.99406 | 1.00079 | 1.00528 | +0.0045
-0.0067 | | 5 | 3 | Be | 0.99492 | 1.00100 | 1.00506 | +0.0041
-0.0061 | | 5 | 3 | Be+CH ₂ | 1.00066 | 1.00390 | 1.00651 | +0.0026
-0.0032 | | 5 | 4 | Ве | 0.99513 | 1.00024 | 1.00365 | +0.0034
-0.0051 | | 5 | 5 | Be | 0.99532 | 0.99967 | 1.00258 | +0.0029
-0.0022 | | 5 | 5 | CH ₂ | 1.00168 | 1.00385 | 1.00598 | +0.0021
-0.0022 | | 5 | 6 | Ве | 0.98296 | 0.98613 | 0.98824 | +0.0021
-0.0032 | | 5 | 7 | Ве | 0.98436 | 0.98657 | 0.98805 | +0.0015
-0.0022 | #### U233-SOL-THERM-011 Table 14 (cont'd). Effect on $k_{\text{eff}}\,\text{due}$ to Uncertainty in Reflector Density. | Solution | Sphere | Reflector |] | Reflector Densi | ty | Change | |----------|--------|-----------|---------|-----------------|---------|--------------------| | No. | No. | | Minimum | Nominal | Maximum | (Δk_{eff}) | | 6 | 1 | Ве | 0.97986 | 0.98694 | 0.99163 | +0.0047
-0.0071 | | 6 | 2 | Be | 0.99280 | 0.99955 | 1.00403 | +0.0045
-0.0068 | | 6 | 3 | Be | 0.99554 | 1.00178 | 1.00594 | +0.0042
-0.0062 | | 6 | 4 | Be | 0.99727 | 1.00267 | 1.00627 | +0.0036
-0.0054 | | 6 | 5 | Be | 0.99579 | 1.00046 | 1.00358 | +0.0031
-0.0047 | | 6 | 5 | CH_2 | 1.00073 | 1.00248 | 1.00419 | +0.0017
-0.0018 | | 7 | 3 | Ве | 0.98227 | 0.98835 | 0.99238 | +0.0040
-0.0061 | | 7 | 4 | Ве | 0.99440 | 1.00008 | 1.00386 | +0.0038
-0.0057 | | 7 | 5 | Ве | 0.99669 | 1.00189 | 1.00535 | +0.0035
-0.0052 | | 7 | 6 | Be | 0.99888 | 1.00335 | 1.00634 | +0.0030
-0.0045 | | 7 | 7 | Ве | 1.00064 | 1.00436 | 1.00684 | +0.0025
-0.0037 | | 7 | 8 | Be | 1.00280 | 1.00516 | 1.00674 | +0.0016
-0.0024 | The uncertainty due to the range of reflector bulk density is significant but does not exceed Δk_{eff} of -0.0074/+0.0049 for any experiment. Revision: 0 Date: April 8, 2002 Page 24 of 47 #### U233-SOL-THERM-011 **2.3.3** Uncertainty in Beryllium Composition – There are no recorded impurities other than the maximum BeO content of 2 wt.%. However, typical commercially pure beryllium contains at least 98.0 wt.% beryllium (in all forms) together with the impurities as listed in Table 7. The sensitivity study investigated the effect of these impurities by calculating the k_{eff} for each system containing beryllium metal with the maximum impurity content and comparing the result to the benchmark-model specification based on pure beryllium metal. The resultant changes in k_{eff} are recorded in Table 15. Table 15. Effect on k_{eff} due to Impurities in Beryllium Metal. | Solution No. | Sphere No. | Reflector | Be Metal I | Impurities | Change | |--------------|---------------|--------------------|------------|------------|------------------------| | BOTANION TO | Spiroto 1 to. | 1101100001 | Maximum | None | $(\Delta k_{\rm eff})$ | | 4 | 1 | Be | 0.98754 | 0.99402 | -0.0065 | | 4 | 2 | Be | 0.98871 | 0.99432 | -0.0056 | | 4 | 3 | Be | 0.99193 | 0.99690 | -0.0050 | | 4 | 3 | Be+CH ₂ | 0.99501 | 0.99698 | -0.0020 | | 4 | 4 | Be | 0.99342 | 0.99752 | -0.0041 | | 4 | 5 | Be | 0.98521 | 0.98856 | -0.0034 | | 4 | 5 | CH ₂ | N/A | 0.99465 | -0.0000 | | 4 | 6 | Be | 0.98270 | 0.98518 | -0.0025 | | 4 | 7 | Be | 0.97912 | 0.98076 | -0.0016 | | 4 | 7 | CH ₂ | N/A | 0.99986 | -0.0000 | | 5 | 1 | Be | 0.98784 | 0.99437 | -0.0065 | | 5 | 2 | Be | 0.99508 | 1.00079 | -0.0057 | | 5 | 3 | Be | 0.99595 | 1.00100 | -0.0051 | | 5 | 3 | Be+CH ₂ | 1.00189 | 1.00390 | -0.0020 | | 5 | 4 | Be | 0.99609 | 1.00024 | -0.0042 | | 5 | 5 | Be | 0.99615 | 0.99967 | -0.0035 | | 5 | 5 | CH ₂ | N/A | 1.00385 | -0.0000 | | 5 | 6 | Be | 0.98358 | 0.98613 | -0.0026 | | 5 | 7 | Be | 0.98480 | 0.98657 | -0.0018 | #### U233-SOL-THERM-011 Table 15 (cont'd). Effect on $k_{\text{eff}}\,\text{due}$ to Impurities in Beryllium Metal. | Solution No. | Sphere No. | Reflector | Be Metal 1 | Impurities | Change | |--------------|------------|-----------------|------------|------------|------------------------| | | 1 | | Maximum | None | $(\Delta k_{\rm eff})$ | | 6 | 1 | Be | 0.98020 | 0.98694 | -0.0067 | | 6 | 2 | Be | 0.99362 | 0.99955 | -0.0059 | | 6 | 3 | Be | 0.99647 | 1.00178 | -0.0053 | | 6 | 4 | Be | 0.99818 | 1.00267 | -0.0045 | | 6 | 5 | Be | 0.99663 | 1.00046 | -0.0038 | | 6 | 5 | CH_2 | N/A | 1.00248 | -0.0000 | | 7 | 3 | Be | 0.98271 | 0.98835 | -0.0056 | | 7 | 4 | Be | 0.99511 | 1.00008 | -0.0050 | | 7 | 5 | Be | 0.99746 | 1.00189 | -0.0044 | | 7 | 6 | Be | 0.99963 | 1.00335 | -0.0037 | | 7 | 7 | Be | 1.00130 | 1.00436 | -0.0031 | | 7 | 8 | Be | 1.00325 | 1.00516 | -0.0019 | The uncertainty due to impurities in beryllium metal is significant but does not exceed Δk_{eff} of -0.0067/+0.0000 for any experiment. #### U233-SOL-THERM-011 #### 2.4 Uncertainty Due to Room Return The experiments are believed to have taken place within the shielded C-Vault of Building 110. This vault is in the shape of a large "D" with a central low density floor positioned above a ten foot deep pit. Figure 2 shows that the assembly mid-plane is at least three feet above the floor. Consequently, the closest concrete surface is at least thirteen feet distant from the center of the assembly. The shielding walls of the vault are five foot thick concrete; the roof is two foot thick concrete. A crude estimate of the sensitivity to room return was performed by reflecting the assembly with a spherical shell of air, thirteen feet in outer radius, followed by an effectively infinite thickness of concrete. The results are given in Table 16. Table 16. Effect on k_{eff} due to Room Return. | Solution No. | Sphere No. | Reflector | Room 1 | Return | Change | |--------------|------------|--------------------|---------|---------|--------------------| | | 1 | | Present | Absent | (Δk_{eff}) | | 4 | 1 | Be | 0.99436 | 0.99402 | +0.0003 | | 4 | 2 | Be | 0.99478 | 0.99432 | +0.0005 | | 4 | 3 | Be | 0.99742 | 0.99690 | +0.0005 | | 4 | 3 | Be+CH ₂ | 0.99758 | 0.99698 | +0.0006 | | 4 | 4 | Be | 0.99814 | 0.99752 | +0.0006 | | 4 | 5 | Be | 0.98925 | 0.98856 | +0.0007 | | 4 | 5 | CH ₂ | 0.99539 | 0.99465 | +0.0007 | | 4 | 6 | Be | 0.98598 | 0.98518 | +0.0008 | | 4 | 7 | Be | 0.98166 | 0.98076 | +0.0009 | | 4 | 7 | CH ₂ | 1.00059 | 0.99986 | +0.0007 | | 5 | 1 | Be | 0.99475 | 0.99437 | +0.0004 | | 5 | 2 | Be | 1.00127 | 1.00079 | +0.0005 | | 5 | 3 | Be | 1.00154 | 1.00100 | +0.0005 | | 5 | 3 | Be+CH ₂ | 1.00412 | 1.00390 | +0.0002 | | 5 | 4 | Be | 1.00087 | 1.00024 | +0.0006 | | 5 | 5 | Be | 1.00037 | 0.99967 | +0.0007 | | 5 | 5 | CH ₂ | 1.00446 | 1.00385 | +0.0006 | | 5 | 6 | Be | 0.98693 | 0.98613 | +0.0008 | | 5 | 7 | Be | 0.98746 | 0.98657 | +0.0009 | #### U233-SOL-THERM-011 Table 16 (cont'd). Effect on k_{eff} due to Room Return. | Solution No. | Sphere No. | Reflector | Room 1 | Return | Change | |--------------|------------|-----------------|---------|---------|--------------------| | | • | | Present | Absent | (Δk_{eff}) | | 6 | 1 | Be | 0.98777 | 0.98694 | +0.0008 | | 6 | 2 | Be | 1.00037 | 0.99955 | +0.0008 | | 6 | 3 | Be | 1.00265 | 1.00178 | +0.0009 | | 6 | 4 | Be | 1.00360 | 1.00267 | +0.0009 | | 6 | 5 | Be | 1.00147 | 1.00046 | +0.0010 | | 6 | 5 | CH ₂ | 1.00279 | 1.00248 | +0.0003 | | 7 | 3 | Be | 0.99041 | 0.98835 | +0.0021 | | 7 | 4 | Be | 1.00222 | 1.00008 | +0.0021 | | 7 | 5 | Be | 1.00410 | 1.00189 | +0.0022 | | 7 | 6 | Be | 1.00568 | 1.00335 | +0.0023 | | 7 | 7 | Be | 1.00676 | 1.00436 | +0.0024 | | 7 | 8 | Be | 1.00772 | 1.00516 | +0.0026 | The uncertainty due to room return can be significant but does not exceed Δk_{eff} of -0.0000/+0.0026 for any experiment. Revision: 0 Date: April 8, 2002 Page 28 of 47 #### U233-SOL-THERM-011 #### 2.5 Total Uncertainty The minimum (most negative) and maximum (most positive) uncertainty in k_{eff} , or Δk_{eff} , applicable to each individual *Falstaff* experiment, is provided in Table 17. These values are the statistical (root-mean-square) sum of the individual uncertainties reported in the previous sections for each experiment. The standard uncertainty in keff is estimated as the square root of the product of the minimum and maximum uncertainties. The standard uncertainty in k_{eff} is estimated to be less than $\pm 1\%$ Δk_{eff} for all *Falstaff* experiments which is sufficiently small to qualify these experiments as acceptable benchmarks. Table 17. Total Uncertainty for Each *Falstaff* Experiment | Experjiment | | | Uncertainty in k_{eff} (or $\square k_{eff}$) | | | |-----------------|------------|-----------------|--|---------|----------| | Solution
No. | Sphere No. | Reflector | Minimum | Maximum | Standard | | 4 | 1 | Be | -0.0102 | +0.0056 | ±0.0075 | | 4 | 2 | Be |
-0.0091 | +0.0053 | ±0.0070 | | 4 | 3 | Be | -0.0085 | +0.0055 | ±0.0068 | | 4 | 3 | $Be + CH_2$ | -0.0045 | +0.0037 | ±0.0041 | | 4 | 4 | Be | -0.0069 | +0.0044 | ±0.0055 | | 4 | 5 | Be | -0.0105 | +0.0093 | ±0.0099 | | 4 | 5 | CH ₂ | -0.0071 | +0.0068 | ±0.0070 | | 4 | 6 | Be | -0.0071 | +0.0064 | ±0.0067 | | 4 | 7 | Be | -0.0051 | +0.0049 | ±0.0050 | | 4 | 7 | CH ₂ | -0.0050 | +0.0052 | ±0.0051 | ^a <u>The American Mathematical Monthly</u>, vol. 107, no. 4, pp. 353 – 357, April 2000, "A Better Bound on the Variance", Rajendra Bhatia and Chandler Davis. #### U233-SOL-THERM-011 Table 17 (cont'd). Total Uncertainty for Each Falstaff Experiment | Experjiment | | | Uncertainty in k_{eff} (or $\square k_{eff}$) | | | |-----------------|------------|-----------------|--|---------|----------| | Solution
No. | Sphere No. | Reflector | Minimum | Maximum | Standard | | 5 | 1 | Be | -0.0102 | +0.0055 | ±0.0075 | | 5 | 2 | Be | -0.0091 | +0.0053 | ±0.0069 | | 5 | 3 | Be | -0.0087 | +0.0055 | ±0.0069 | | 5 | 3 | $Be + CH_2$ | -0.0041 | +0.0031 | ±0.0036 | | 5 | 4 | Be | -0.0073 | +0.0048 | ±0.0060 | | 5 | 5 | Be | -0.0046 | +0.0039 | ±0.0043 | | 5 | 5 | CH ₂ | -0.0027 | +0.0030 | ±0.0029 | | 5 | 6 | Be | -0.0061 | +0.0052 | ±0.0056 | | 5 | 7 | Be | -0.0053 | +0.0050 | ±0.0052 | | 6 | 1 | Be | -0.0104 | +0.0059 | ±0.0079 | | 6 | 2 | Be | -0.0093 | +0.0052 | ±0.0070 | | 6 | 3 | Be | -0.0083 | +0.0047 | ±0.0062 | | 6 | 4 | Be | -0.0072 | +0.0042 | ±0.0055 | | 6 | 5 | Be | -0.0064 | +0.0040 | ±0.0051 | | 6 | 5 | CH ₂ | -0.0023 | +0.0024 | ±0.0023 | | 7 | 3 | Be | -0.0086 | +0.0051 | ±0.0066 | | 7 | 4 | Be | -0.0079 | +0.0050 | ±0.0063 | | 7 | 5 | Be | -0.0071 | +0.0048 | ±0.0058 | | 7 | 6 | Be | -0.0060 | +0.0043 | ±0.0051 | | 7 | 7 | Be | -0.0053 | +0.0043 | ±0.0048 | | 7 | 8 | Be | -0.0055 | +0.0056 | ±0.0055 | The uncertainties associated with the solution may contribute to systematic uncertainty in the calculated k_{eff} for each solution series which is estimated to be at most $\pm 0.0032~\Delta k_{eff}$. All other uncertainties are random. Revision: 0 Date: April 8, 2002 Page 30 of 47 #### 3.0 BENCHMARK SPECIFICATIONS ## 3.1 <u>Description of Model</u> The benchmark-model representation for each critical experiment is a one-dimensional spherical-geometry model consisting of three or four uniform regions corresponding to the solution, the steel vessel, and the reflector with a vacuum boundary condition applied to the outermost (reflector) surface of the sphere. An illustrative sketch of a typical benchmark-model is provided as Figure 4. Figure 4. Benchmark-Model (Example^a). ^a The example corresponds to the first entry in Table 21 which is solution no. 4 in sphere no. 1 containing with reflection by 9.17 cm of beryllium. Note that the figure is not drawn to scale. U233-SOL-THERM-011 Revision: 0 Page 32 of 47 Date: April 8, 2002 ### U233-SOL-THERM-011 # 3.2 <u>Dimensions</u> The model dimensions vary for each experiment depending on the vessel size and critical reflector thickness. The outer radii of each material region for each experiment are given in Table 18. Table 18. Benchmark Model Outer Radial Dimensions in Centimeters. | Solution No. | Sphere No. | Solution | Steel | Beryllium | Polyethylene | |--------------|------------|----------|---------|-----------|--------------| | 4 | 1 | 7.8726 | 7.9209 | 17.0909 | | | 4 | 2 | 8.5152 | 8.5635 | 15.1435 | | | 4 | 3 | 9.0079 | 9.0562 | 14.3262 | | | 4 | 3 | 9.0079 | 9.0562 | 10.1962 | 15.0762 | | 4 | 4 | 9.6633 | 9.7116 | 13.6016 | | | 4 | 5 | 10.1625 | 10.2107 | 13.1107 | | | 4 | 5 | 10.1625 | 10.2107 | | 13.7807 | | 4 | 6 | 10.7992 | 10.8475 | 12.8375 | | | 4 | 7 | 11.4152 | 11.4635 | 12.7035 | | | 4 | 7 | 11.4152 | 11.4635 | | 13.1435 | | 5 | 1 | 7.8726 | 7.9209 | 17.6509 | | | 5 | 2 | 8.5152 | 8.5635 | 15.6535 | | | 5 | 3 | 9.0079 | 9.0562 | 14.6462 | | | 5 | 3 | 9.0079 | 9.0562 | 10.1962 | 16.3962 | | 5 | 4 | 9.6633 | 9.7116 | 13.8016 | | | 5 | 5 | 10.1625 | 10.2107 | 13.4107 | | | 5 | 5 | 10.1625 | 10.2107 | | 14.2507 | | 5 | 6 | 10.7992 | 10.8475 | 12.9275 | | | 5 | 7 | 11.4152 | 11.4635 | 12.8335 | | | 6 | 1 | 7.8726 | 7.9209 | 19.8309 | | | 6 | 2 | 8.5152 | 8.5635 | 17.0935 | | | 6 | 3 | 9.0079 | 9.0562 | 15.7362 | | | 6 | 4 | 9.6633 | 9.7116 | 14.6116 | | | 6 | 5 | 10.1625 | 10.2107 | 14.0307 | | | 6 | 5 | 10.1625 | 10.2107 | | 15.7207 | | 7 | 3 | 9.0079 | 9.0562 | 19.1362 | | | 7 | 4 | 9.6633 | 9.7116 | 17.2016 | | | 7 | 5 | 10.1625 | 10.2107 | 16.1307 | | | 7 | 6 | 10.7992 | 10.8475 | 15.2675 | | | 7 | 7 | 11.4152 | 11.4635 | 14.7635 | | | 7 | 8 | 12.4564 | 12.5047 | 14.3447 | | Revision: 0 Date: April 8, 2002 Page 33 of 47 #### U233-SOL-THERM-011 The vessel wall thickness was 0.019 inches (or 0.0483 cm) in all cases. The inner (solution) radius was based on the measured capacities given in Table 1 assuming one milliliter for each gram of water. The reflector radii were based on the reported critical thickness given in Table 2. # 3.3 Material Data The solution models were based on the *best choice* from the reported data. The approach taken was to preserve all significant parameters within the reported experimental ranges; hence, - 1. The fissile ²³³U masses and concentrations are correct to the reported number of significant figures based on the benchmark-model concentrations of 0.4469, 0.3669, 0.2363 and 0.1244 g²³³U/cc as described in Section 2.1.1; - 2. The uranium isotopics are as reported in Table 4 except that the ²³⁸U content has been reduced to preserve the sum of the constituents as 100% of the whole. - 3. The fissile concentrations and isotopics determine the UO_2F_2 concentrations in the models as 0.5896, 0.4840, 0.3117 and 0.1641 g/cm³; - 4. The density of solution number 4 is taken as the reported value of 1.4960 g/cm³; - 5. The total solution densities for solutions numbers 5, 6 and 7 are calculated as 1.4104 ± 0.0006 , 1.2640 ± 0.0004 and 1.1387 ± 0.0002 using the semi-empirical formula described in Section 2.1.3 and Appendix C; - 6. The HF concentrations in the models are 0.0045, 0.0042, 0.0038 and 0.0034 g/cm³ based on the reported HF content of 0.3 percent by weight of the solution; and, - 7. The H₂O concentrations are then determined as the difference between the total solution density less the UO₂F₂ and HF components which yields 0.9019 g/cm³, 0.9221 g/cm³, 0.9485 g/cm³ and 0.9712 g/cm³ for solutions 4, 5, 6 and 7, respectively. The atom densities for each constituent of the solutions may now be calculated as provided in Table 19 below. ### U233-SOL-THERM-011 Table 19. Atom Densities for ²³³U Solution. | Solution → | No. 4 | No. 5 | No. 6 | No. 7 | | | | | |-----------------------|------------------------------|-------------------------|-------------------------|-------------------------|--|--|--|--| | Isotope
or Nuclide | Atom Density (atoms/barn-cm) | | | | | | | | | ²³² U | 2.3535×10^{-8} | 1.9322×10^{-8} | 1.2444×10^{-8} | 6.5513×10^{-9} | | | | | | ^{233}U | 1.1548×10^{-3} | 9.4812×10^{-4} | 6.1063×10^{-4} | 3.2147×10^{-4} | | | | | | ^{234}U | 1.2548×10^{-5} | 1.0302×10^{-5} | 6.6346×10^{-6} | 3.4928×10^{-6} | | | | | | ^{235}U | 4.6236×10^{-7} | 3.7959×10^{-7} | 2.4447×10^{-7} | 1.2870×10^{-7} | | | | | | ^{238}U | 3.6785×10^{-6} | 3.0200×10^{-6} | 1.9450×10^{-6} | 1.0240×10^{-6} | | | | | | Н | 6.0432×10^{-2} | 6.1775×10^{-2} | 6.3523×10^{-2} | 6.5030×10^{-2} | | | | | | О | 3.2492×10^{-2} | 3.2748×10^{-2} | 3.2943×10^{-2} | 3.3115×10^{-2} | | | | | | F | 2.4782×10^{-3} | 2.0510×10^{-3} | 1.3530×10^{-3} | 7.5507×10^{-4} | | | | | The atom densities given in Table 20 for the type 347 stainless steel vessel are based on the nominal alloy at 8.0 g/cm³. Table 20. Atom Densities for Type 347 Stainless Steel. | Nuclide | Composition (wt.%) | Atom Density (atoms/barn-cm) | |---------|--------------------|------------------------------| | Fe | 71 | 6.1248×10^{-2} | | Cr | 18 | 1.6678×10^{-2} | | Ni | 11 | 9.0264×10^{-3} | The atom densities for the beryllium and polyethylene reflectors given in Table 21 are based on average bulk densities of 1.82 and 0.92 g/cm³, respectively. Table 21. Atom Densities for the Beryllium and Polyethylene Reflectors. | Material | Nuclide | Atom Density (atoms/barn-cm) | |--------------|---------|------------------------------| | Beryllium | Be | 1.2161×10^{-1} | | Polyethylene | С | 3.9497×10^{-2} | | (CH_2) | Н | 7.8994×10^{-2} | Revision: 0 Date: April 8, 2002 Page 35 of 47 ### U233-SOL-THERM-011 ## 3.4 <u>Temperature Data</u> The temperature of the experiments is not known but is assumed to be ambient room temperature of about 20°C (70°F). # 3.5 Experimental and Benchmark-Model keff The experimental configurations are extrapolations to critical configurations. Therefore, the experimental k_{eff} 's are equal to one. Estimates of the uncertainty in k_{eff} due to the uncertainty in the various experimental parameters are provided in Section 2 with an estimate of the total uncertainty for each experiment given in Table 20. The experimental k_{eff} is then simply one plus-or-minus the standard uncertainty. These values are provided in Table 22. Table 22. Experimental keff | Solution No. | Sphere No. | Reflector | Experimental k _{eff} | |--------------|------------|-----------------|-------------------------------| | 4 | 1 | Be | 1.0000 ± 0.0075 | | 4 | 2 | Be | 1.0000 ± 0.0070 | | 4 | 3 | Be | 1.0000 ± 0.0068 | | 4 | 3 | $Be + CH_2$ | 1.0000 ± 0.0041 | | 4 | 4 | Be | 1.0000 ± 0.0055 | | 4 | 5 | Be | 1.0000 ± 0.0099 | | 4 | 5 | CH ₂ | 1.0000 ± 0.0070 | | 4
| 6 | Be | 1.0000 ± 0.0067 | | 4 | 7 | Be | 1.0000 ± 0.0050 | | 4 | 7 | CH ₂ | 1.0000 ± 0.0051 | # U233-SOL-THERM-011 Table 22 (cont'd). Experimental k_{eff} | Solution No. | Sphere No. | Reflector | Experimental k _{eff} | |--------------|------------|-----------------|-------------------------------| | 5 | 1 | Be | 1.0000 ± 0.0075 | | 5 | 2 | Be | 1.0000 ± 0.0069 | | 5 | 3 | Be | 1.0000 ± 0.0069 | | 5 | 3 | $Be + CH_2$ | 1.0000 ± 0.0036 | | 5 | 4 | Be | 1.0000 ± 0.0060 | | 5 | 5 | Be | 1.0000 ± 0.0043 | | 5 | 5 | CH ₂ | 1.0000 ± 0.0029 | | 5 | 6 | Be | 1.0000 ± 0.0056 | | 5 | 7 | Be | 1.0000 ± 0.0052 | | 6 | 1 | Be | 1.0000 ± 0.0079 | | 6 | 2 | Be | 1.0000 ± 0.0070 | | 6 | 3 | Be | 1.0000 ± 0.0062 | | 6 | 4 | Be | 1.0000 ± 0.0055 | | 6 | 5 | Be | 1.0000 ± 0.0051 | | 6 | 5 | CH ₂ | 1.0000 ± 0.0023 | | 7 | 3 | Be | 1.0000 ± 0.0066 | | 7 | 4 | Be | 1.0000 ± 0.0063 | | 7 | 5 | Be | 1.0000 ± 0.0058 | | 7 | 6 | Be | 1.0000 ± 0.0051 | | 7 | 7 | Be | 1.0000 ± 0.0048 | | 7 | 8 | Be | 1.0000 ± 0.0055 | ### U233-SOL-THERM-011 ### 4.0 RESULTS OF SAMPLE CALCULATIONS Calculated k_{eff} results for a sample of United States codes are presented in Table 23. Details of the SAN, KENO, VIM, MCNP and COG codes are provided in Appendix A. A typical input listing for each code is also provided in this appendix. In several of the cross-section sets described in Table 23, cross-section data for 232 U is unavailable. In these cases the 234 U content has been increased to account for 232 U as stated in Appendix A. Table 23. Sample Calculational Results (United States). | | $\begin{array}{c} \text{Code} \rightarrow \\ \text{(Cross Section Set)} \rightarrow \end{array}$ | | SAN
(92-
Group
L-DIV) | KENO
(27-Group
ENDF/B-IV) | MCNP
(Continuous
Energy
ENDF/B-VI) | COG
(Continuous
Energy
ENDF/B-VI) | COG
(Continuous
Energy
RED2002) | |--------------|--|--------------------|--------------------------------|---------------------------------|---|--|--| | Sol'n
No. | Sphere
No. | Reflector | | | | | | | 4 | 1 | Be | 0.99402 | 1.0173 ± 0.0003 | 0.9923 ± 0.0002 | 0.9905 ± 0.0003 | 1.0064 ± 0.0003 | | 4 | 2 | Be | 0.99432 | 1.0132 ± 0.0003 | 0.9875 ± 0.0002 | 0.9863 ± 0.0003 | 1.0045 ± 0.0003 | | 4 | 3 | Be | 0.99690 | 1.0143 ± 0.0004 | 0.9887 ± 0.0002 | 0.9877 ± 0.0003 | 1.0063 ± 0.0003 | | 4 | 3 | Be+CH ₂ | 0.99698 | 1.0112 ± 0.0003 | 0.9901 ± 0.0002 | 0.9855 ± 0.0003 | 1.0070 ± 0.0003 | | 4 | 4 | Be | 0.99752 | 1.0129 ± 0.0004 | 0.9879 ± 0.0002 | 0.9866 ± 0.0003 | 1.0074 ± 0.0003 | | 4 | 5 | Be | 0.98856 | 1.0031 ± 0.0003 | 0.9781 ± 0.0002 | 0.9766 ± 0.0003 | 1.0069 ± 0.0003 | | 4 | 5 | CH ₂ | 0.99465 | 1.0072 ± 0.0003 | 0.9871 ± 0.0002 | 0.9827 ± 0.0003 | 1.0069 ± 0.0003 | | 4 | 6 | Be | 0.98518 | 0.9986 ± 0.0003 | 0.9743 ± 0.0002 | 0.9736 ± 0.0003 | 0.9958 ± 0.0003 | | 4 | 7 | Be | 0.98076 | 0.9923 ± 0.0004 | 0.9700 ± 0.0002 | 0.9686 ± 0.0003 | 0.9923 ± 0.0003 | | 4 | 7 | CH ₂ | 0.99986 | 1.0103 ± 0.0003 | 0.9895 ± 0.0002 | 0.9877 ± 0.0003 | 1.0127 ± 0.0003 | # U233-SOL-THERM-011 Table 23 (cont'd). Sample Calculational Results (United States). | $\begin{array}{c} \text{Code} \rightarrow \\ \text{(Cross Section Set)} \rightarrow \end{array}$ | | SAN
(92-
Group
L-DIV) | KENO
(27-Group
ENDF/B-IV) | MCNP
(Continuous
Energy
ENDF/B-VI) | COG
(Continuous
Energy
ENDF/B-VI) | COG
(Continuous
Energy
RED2002) | | |--|------------|--------------------------------|---------------------------------|---|--|--|---------------------| | Sol'n
No. | Sphere No. | Reflector | | | | | | | 5 | 1 | Be | 0.99437 | 1.0202 ± 0.0003 | 0.9932 ± 0.0002 | 0.9932 ± 0.0003 | 1.0089 ± 0.0003 | | 5 | 2 | Be | 1.00079 | 1.0209 ± 0.0004 | 0.9936 ± 0.0002 | 0.9943 ± 0.0003 | 1.0119 ± 0.0003 | | 5 | 3 | Be | 1.00100 | 1.0186 ± 0.0003 | 0.9913 ± 0.0002 | 0.9924 ± 0.0003 | 1.0112 ± 0.0003 | | 5 | 3 | Be+CH ₂ | 1.00390 | 1.0175 ± 0.0003 | 0.9979 ± 0.0003 | 0.9926 ± 0.0003 | 1.0132 ± 0.0003 | | 5 | 4 | Be | 1.00024 | 1.0158 ± 0.0003 | 0.9912 ± 0.0002 | 0.9901 ± 0.0003 | 1.0104 ± 0.0003 | | 5 | 5 | Be | 0.99967 | 1.0141 ± 0.0003 | 0.9896 ± 0.0002 | 0.9891 ± 0.0003 | 1.0099 ± 0.0003 | | 5 | 5 | CH ₂ | 1.00385 | 1.0168 ± 0.0003 | 0.9966 ± 0.0002 | 0.9919 ± 0.0003 | 1.0162 ± 0.0003 | | 5 | 6 | Be | 0.98613 | 0.9985 ± 0.0003 | 0.9754 ± 0.0002 | 0.9748 ± 0.0003 | 0.9975 ± 0.0003 | | 5 | 7 | Be | 0.98657 | 0.9982 ± 0.0004 | 0.9757 ± 0.0002 | 0.9755 ± 0.0003 | 0.9983 ± 0.0003 | | 6 | 1 | Be | 0.98694 | 1.0210 ± 0.0003 | 0.9955 ± 0.0002 | 0.9940 ± 0.0003 | 1.0077 ± 0.0003 | | 6 | 2 | Be | 0.99955 | 1.0233 ± 0.0003 | 0.9985 ± 0.0002 | 0.9984 ± 0.0003 | 1.0137 ± 0.0003 | | 6 | 3 | Be | 1.00178 | 1.0215 ± 0.0003 | 0.9968 ± 0.0002 | 0.9967 ± 0.0003 | 1.0137 ± 0.0003 | | 6 | 4 | Be | 1.00267 | 1.0193 ± 0.0003 | 0.9944 ± 0.0002 | 0.9945 ± 0.0003 | 1.0137 ± 0.0003 | | 6 | 5 | Be | 1.00046 | 1.0141 ± 0.0003 | 0.9908 ± 0.0002 | 0.9917 ± 0.0003 | 1.0110 ± 0.0003 | | 6 | 5 | CH ₂ | 1.00248 | 1.0151 ± 0.0004 | 0.9958 ± 0.0002 | 0.9907 ± 0.0003 | 1.0139 ± 0.0003 | | 7 | 3 | Be | 0.98835 | 1.0170 ± 0.0003 | 0.9937 ± 0.0002 | 0.9937 ± 0.0003 | 1.0079 ± 0.0003 | | 7 | 4 | Be | 1.00008 | 1.0216 ± 0.0003 | 0.9981 ± 0.0002 | 0.9988 ± 0.0004 | 1.0146 ± 0.0003 | | 7 | 5 | Be | 1.00189 | 1.0188 ± 0.0003 | 0.9961 ± 0.0002 | 0.9980 ± 0.0003 | 1.0145 ± 0.0003 | | 7 | 6 | Be | 1.00335 | 1.0171 ± 0.0003 | 0.9945 ± 0.0002 | 0.9969 ± 0.0003 | 1.0149 ± 0.0003 | | 7 | 7 | Be | 1.00436 | 1.0162 ± 0.0003 | 0.9938 ± 0.0002 | 0.9960 ± 0.0003 | 1.0158 ± 0.0003 | | 7 | 8 | Be | 1.00516 | 1.0134 ± 0.0003 | 0.9936 ± 0.0002 | 0.9961 ± 0.0003 | 1.0168 ± 0.0003 | # U233-SOL-THERM-011 # 5.0 REFERENCES There are no published references. Revision: 0 Date: April 8, 2002 Page 40 of 47 U233-SOL-THERM-011 ### APPENDIX A: TYPICAL CODE INPUT LISTINGS # A.1 SAN Input Listing An input listing for a SAN calculation using ultra-fine automatic meshing is provided below. SAN^a is a short version of the ANISN code originally developed at ORNL and subsequently modified at LLNL. All SAN calculations were performed in the default $S_{12}P_3$ approximation and utilized the 92-group cross-section library developed (circa 1976) by LLNL (L-Division) for criticality safety applications. SAN Input Listing Corresponding to the First Entry in Table 26. ``` FALSTAFF; Sol'n No. 4; Sphere No. 1; 9.17 cm Be sphere reflection vacuum u233 0 3 1.1548-3 0 3 1.2572-5 1 u234 0 3 u235 4.6236-7 1 u238 0 3 3.6785-6 1 h*h2o 0 3 6.0432-2 1 0 3 0 3.2492-2 0 1 f 3 2.4782-3 2 fe 0 3 6.1248-2 2 0 3 1.6678-2 cr 2 ni 0 3 9.0264-3 3 be*metal 0 3 1.2161-1 last 7.8726 0.1 1 7.9209 0.1 17.0909 0.1 last end ``` Cross-section data for ²³²U is not available in the 92-group LLNL cross-section library; consequently, the ²³⁴U content has been increased to include ²³²U and ²³⁴U. ^a Susan Post, Summary Guide, Running SAN on UNIX Computers, January 3, 2000. #### U233-SOL-THERM-011 # A.2 KENO Input Listing An input deck for a KENO-Va^a calculation using the CSAS25^b module and the 27-group ENDF/B-IV SCALE cross-section library is provided below. The calculation used a total of 5050 generations, with 2500 neutrons per generation, and skipped 50 generations. This result is therefore based on 12.5 million active neutron histories. KENO Input Listing Corresponding to the First Entry in Table 26. ``` FALSTAFF; Sol'n No. 4; Sphere No. 1; 9.17 cm Be 27GROUPNDF4 INFHOMMEDIUM U-233 1 0.0 1.1548-3 END U-234 1 0.0 1.2572-5 END U-235 1 0.0 4.6236-7 END U-238 1 0.0 3.6785-6 END 1 0.0 6.0432-2 END 1 0.0 3.2492-2 END 1 0.0 2.4782-3 END F 2 0.0 6.1248-2 END FE 2 0.0 1.6678-2 END CR 2 0.0 9.0264-3 END NI 3 0.0 1.2161-1 END ΒE END COMP READ PARAMETERS GEN=5050 NPG=2500 NSK=50 TME=2500 END PARAMETERS READ GEOM 7.8726 SPHERE 1 1 SPHERE 2 1 7.9209 SPHERE 3 1 17.0909 END GEOMETRY END DATA END ``` Cross-section data for ²³²U is not available in the 27-group ENDF/B-IV SCALE cross-section library; consequently, the ²³⁴U content has been increased to include ²³²U and ²³⁴U. ^a L. M. Petrie and N.F. Landers, *KENO V.a: An Improved Monte Carlo Criticality Program with Supergrouping*, NUREG/CR-0200, Revision 6, Volume 2, Section F11, ORNL/NUREG/CSD-2/R6, Oak Ridge National Laboratory, September 1998. ^b N. F. Landers and L. M. Petrie, *CSAS: Control Module for Enhanced Criticality Safety Analysis Sequences*, NUREG/CR-0200, Revision 6, Volume 1, Section C4, ORNL/NUREG/CSD-2/V2/R6, Oak Ridge National Laboratory, September 1998. #### U233-SOL-THERM-011 ## A.3 MCNP Input Listing The input listing for an MCNP4C^a calculation using continuous-energy ENDF/B-VI, Release 2, cross sections is provided below. The calculation employed a total of 5200 generations and 5000 neutrons per generation. The first 200 generations were skipped so that the result is based on 25.0 million active neutron histories. MCNP Input Listing Corresponding to the First Entry in Table 26. ``` FALSTAFF; Sol'n No. 4; Sphere No. 1; 9.17 cm Be 1
1 -1.4960 -1 2 2 -8.00 1 -2 3 3 -1.82 2 -3 1 so 7.8726 2 so 7.9209 3 so 17.0909 imp:n 1 1 1 0 m1 92232.60c 2.3535-8 92233.60c 1.1548-3 92234.60c 1.2548-5 & 92235.60c 4.6236-7 92238.60c 3.6785-6 1001.60c 6.0432-2 & 8016.60c 3.2492-2 9019.60c 2.4782-3 mt1 lwtr.01t m2 26054.60c 0.3552-2 26056.60c 5.6226-2 26057.60c 0.1286-2 & 26058.60c 0.0184-2 24050.60c 0.0726-2 24052.60c 1.3974-2 & 24053.60c 0.1584-2 24054.60c 0.0394-2 28058.60c 6.1623-3 & 28060.60c 2.3560-3 28061.60c 0.1020-3 28062.60c 0.3240-3 & 28064.60c 0.0821-3 m3 4009.60c 1. be.01t mt3 kcode 5000 1. 200 5200 ksrc 0. 0. 0. ``` ^a Judith F. Briesmeister, Ed., *MCNPTM – A General Monte Carlo N-Particle Transport Code, Version 4C*, LA-13709-M, Los Alamos National Laboratory, April 10, 2000. #### U233-SOL-THERM-011 ## A.4 COG Input Listing The input listing for a COG^a calculation using continuous ENDF/B-VI (Release 7) cross sections is provided below. The calculation employed a total of 5020 generations and 5000 neutrons per generation. The first 20 generations were skipped so that the result is based on 25.0 million active neutron histories. COG Input Listing Corresponding to the First Entry in Table 26. ``` FALSTAFF; Sol'n No. 4; Sphere No. 1; 9.17 cm Be basic neutron delayedn CENTIMETERS criticality npart=5000 nbatch=5020 sdt=0.0001 nfirst=21 norm=1. nsource=1 0. 0. 0. mix nlib=ENDFB6R7 sablib=COGSA mat=1 bunches u233 1.1548-3 u234 1.2572-5 u235 4.6236-7 u238 3.6785-6 $ Solution No. 4 (h.h2o) 6.0432-2 o16 3.2492-2 f 2.4782-3 $ @ H/X = 52 mat=2 w-p 8.0 $ SS-347 @ 8.0 g/cc fe 71. cr 18. ni 11. $ Fe-18Cr-11Ni mat=3 (be) 1.82 $ Beryllium Metal assign-mc 1 yellow 2 gray 3 green geometry sector 1 Soln -1 sector 2 SS347 1 -2 sector 3 Be 2 -3 boundary vacuum picture cs material 0 18 -18 0 -18 18 0 - 18 volume material -18 -18 -18 18 -18 -18 -18 18 -18 36 36 36 surfaces 1 sphere 7.8726 2 sphere 7.9209 3 sphere 17.0909 end ``` Cross-section data for ²³²U is not available in the ENDFB6R7 cross-section library; consequently, the ²³⁴U content has been increased to include ²³²U and ²³⁴U. ^a Richard Buck, DeLynn Clark, Stella Hadjimarkos and Edward Lent, COG: A Monte Carlo Neutron, Photon and Electron Transport Code; User's Manual, Second Edition, Lawrence Livermore National Laboratory, July 4, 1994. U233-SOL-THERM-011 # **APPENDIX B: FISSION SPECTRA** COG calculated results for the median energy of those neutrons which produce fission events (i.e., the median fission energy) together with the fraction of fissions produced by neutrons in the thermal, intermediate and fast energy ranges are presented in Table B. Table B. COG Calculated Fission Spectra. |] | Experim | ent | Median Fission | | Fission, % | | |-----------------|---------------|----------------------|----------------|----------------------|--------------------------------------|------------------| | Solution
No. | Sphere
No. | Reflector | Energy (eV) | Thermal (< 0.625 eV) | Intermediate
(0.625 eV – 100 keV) | Fast (> 100 keV) | | | | | Mixed | Fission Spectra | | | | 4 | 7 | Be | 0.799 | 48.43 | 47.64 | 3.93 | | 4 | 6 | Be | 0.783 | 48.56 | 47.60 | 3.83 | | 4 | 5 | Be | 0.760 | 48.75 | 47.53 | 3.72 | | 4 | 4 | Be | 0.722 | 49.08 | 47.33 | 3.59 | | 4 | 3 | Be | 0.671 | 49.55 | 46.98 | 3.46 | | | | | Therma | l Fission Spectra | | | | 4 | 2 | Be | 0.617 | 50.08 | 46.56 | 3.36 | | 4 | 1 | Be | 0.500 | 51.48 | 45.35 | 3.17 | | 4 | 7 | CH ₂ | 0.449 | 52.17 | 44.19 | 3.64 | | 5 | 7 | Be | 0.326 | 54.36 | 42.45 | 3.19 | | 5 | 6 | Be | 0.323 | 54.44 | 42.44 | 3.12 | | 5 | 5 | Be | 0.310 | 54.72 | 42.28 | 3.00 | | 5 | 4 | Be | 0.302 | 54.93 | 42.14 | 2.93 | | 5 | 3 | Be | 0.282 | 55.42 | 41.76 | 2.82 | | 5 | 2 | Be | 0.262 | 55.99 | 41.29 | 2.72 | | 4 | 5 | CH ₂ | 0.221 | 56.95 | 39.76 | 3.29 | | 5 | 1 | Be | 0.222 | 57.24 | 40.17 | 2.59 | | 4 | 3 | Be + CH ₂ | 0.185 | 58.08 | 38.74 | 3.18 | | 5 | 5 | CH ₂ | 0.122 | 62.41 | 34.93 | 2.66 | | 5 | 3 | Be + CH ₂ | 0.110 | 63.33 | 34.10 | 2.57 | # U233-SOL-THERM-011 # Table B (cont'd). COG Calculated Fission Spectra. | | Experiment | | Median Fission | Fission, % | | | | |-----------------|---------------|-----------|----------------|----------------------|-----------------------------------|------------------|--| | Solution
No. | Sphere
No. | Reflector | Energy (eV) | Thermal (< 0.625 eV) | Intermediate (0.625 eV – 100 keV) | Fast (> 100 keV) | | | 6 | 5 | Be | 0.095 | 66.12 | 31.95 | 1.93 | | | 6 | 4 | Be | 0.094 | 66.33 | 31.80 | 1.87 | | | 6 | 3 | Be | 0.091 | 66.75 | 31.45 | 1.80 | | | 6 | 2 | Be | 0.088 | 67.33 | 30.93 | 1.74 | | | 6 | 1 | Be | 0.083 | 68.43 | 29.91 | 1.66 | | | 6 | 5 | CH_2 | 0.066 | 72.55 | 25.75 | 1.70 | | | 7 | 8 | Be | 0.052 | 78.41 | 20.48 | 1.10 | | | 7 | 7 | Be | 0.052 | 78.47 | 20.46 | 1.06 | | | 7 | 6 | Be | 0.051 | 78.51 | 20.45 | 1.03 | | | 7 | 5 | Be | 0.051 | 78.69 | 20.30 | 1.00 | | | 7 | 4 | Be | 0.051 | 78.91 | 20.11 | 0.98 | | | 7 | 3 | Be | 0.050 | 79.33 | 19.73 | 0.94 | | Revision: 0 Date: April 8, 2002 Page 46 of 47 U233-SOL-THERM-011 ### APPENDIX C: SOLUTION DENSITY The fissile (²³³U) concentration and total density for *Falstaff* solution numbers 1, 2, 3 and 4 have been published as given in Table C. These *Falstaff* solutions are ternary aqueous solutions of uranyl-fluoride with 0.3 percent by weight of solution excess hydrofluoric acid. The density given in Table C for a solution with no uranyl-fluoride is obtained by interpolation from published data^a for binary aqueous solutions of hydrofluoric acid. ²³³U Concentration (g/ml) Reference Solution Density (g/ml) 0.866 ± 0.003 1.9712 ± 0.0005 233U-SOL-INTER-001, Table 9 0.749 ± 0.003 233U-SOL-INTER-001, Table 9 1.8386 ± 0.0005 0.5672 ± 0.0026 1.6357 ± 0.0005 233U-SOL-INTER-001, Table 9 0.4469 ± 0.0015 1.4960 ± 0.0005 233U-SOL-THERM-011, Table 9 Landolt-Börnstein^a 0.99925 ± 0.00001 0.0 Table C. Aqueous Solutions of Uranyl Fluoride with 0.3 wt-% Hydrofluoric Acid. This data from Table C is plotted on the following page and includes the *best-fit* to the data which is the line: $$\rho = (0.99925 \pm 0.00001) + (1.1206 \pm 0.0016) \bullet C(^{233}U)$$ where ρ is the solution density in g/ml and $C(^{233}U)$ is the fissile concentration in $g(^{233}U)$ /ml. This plot and fit were obtained using the routine **gnuplot**^b which utilized a non-linear least-squares Marquardt-Levenberg algorithm. The solutions densities for *Falstaff* solutions 5, 6 and 7 listed in Table 9 were calculated using this formula and are shown in the plot as open black squares. ^a J. D'Ans, H. Surawski and C. Synowietz, **Landolt-Börnstein Numerical Data and Functional Relationships in Science and Technology**, *New Series*, K.-H. Hellwege, Editor-in-Chief, <u>Group IV: Macroscopic and Technical Properties of Matter</u>, Volume 1, *Densities of Liquid Systems and their Heat Capacities*, Part b, *Densities of Binary Aqueous Systems and Heat Capacities of Liquid Systems*, Kl. Schafer, Editor (Springer-Verlag, 1977). ^b **gnuplot** – An Interactive Plotting Program, Copyright © 1986–1993, 1998 Thomas Williams and Colin Kelly.